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The mechanics of eddy transport from one hemisphere to the other
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SUMMARY

The trajectory of a dense eddy propagating along the bottom of a meridional channel of parabolic cross-
section from the southern to the northern hemisphere is described by a Hamiltonian system with two degrees of
freedom. Two simpli� ed types of motion exist in which the meridional acceleration vanishes: in midlatitudes the
motion is geostrophic, poleward (equatorward) directed along the western (eastern) � ank of the channel, while on
the equator the motion consists of zonal oscillations along the potential-well generated by the bottom parabolic
cross-section of the channel. The eddy’s propagation along the equator is much faster than that in midlatitudes,
which enhances its dissipation via mixing with the overlying ocean water. For motions that occur slightly off the
equator the eastward segment is stable while the westward segment is unstable, so an expulsion from the equatorial
regime takes place during the latter. A dense eddy that arrives near the equator along the west � ank of the channel,
has to cross the channel to its east � ank where it can either oscillate back (westward) to the other side, or move
poleward from the equator along the channel’s east � ank. The eddy’s dissipation during the equatorial part of
its trajectory is very large, and the probability of the dissipated eddy leaving the equator to either hemisphere is
identical.

The non-integrability of the system is manifested in the sensitive combination of the equatorial and the
midlatitude regimes that renders the dynamics of the transport of dense eddies across the equator chaotic. This
description explains both the sharp decrease in the amount of Antarctic bottom water mass in the immediate
vicinity of the equator in the western Atlantic Ocean and the ‘splitter’ effect of the equator. This effect,
encountered in earlier � uid dynamical numerical simulations, causes a current, and a cloud of particles, to
chaotically split into two parts � owing in different hemispheres.

KEYWORDS: AABW transport Cross-equatorial � ow Non-integrable Hamiltonian dynamics

1. INTRODUCTION

The precise way in which the dense Antarctic Bottom Water (AABW) makes its
way from Antarctica, across the equator and into the northern hemisphere along the
ocean � oor has intrigued oceanographers for over four decades. Conjecture regarding
the existence of deep (below 2000 m) equatorward � ow along the ocean � oor was � rst
raised by Stommel (1958), based only on a simple thermally driven convective model
and general consideration regarding the distribution of oxygen and temperature in the
deep ocean. The dynamics of this slow, but high-transport, � ow (about 0.03 cm s¡1

and 50 Sv according to Stommel) has been the subject of numerous theoretical, com-
putational and observational works that have all tried to better quantify and ascertain
its existence. Even though there have not been any direct observations of eddies on
the ocean bottom, it makes sense to assume that some of the transport is discontinuous
and that, just like the upper ocean, some of the transport probably occurs via eddies
(see e.g. Borisov and Nof 1998). Our goal in this work is to analyse the dynamics of
the transport of dense eddies from high latitudes of the southern hemisphere into the
northern hemisphere from a mechanical viewpoint, and to explain several features of
this transport that are directly observed or numerically computed.

Observational and theoretical advances made during the last four decades are
summarized in Nof and Borisov (1998, hereafter NB) to which we refer the reader for
a more complete review of the subject. The present study complements the theoretical
works of NB and Borisov and Nof (1998) by casting both the equatorward motion from
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high southern latitudes and the equator-crossing problems into Hamiltonian systems.
As was shown in NB, particle Lagrangian formulation of the equator-crossing problem
by deep ocean eddies yields similar results to those obtained from simulations of a
continuous current by an Ocean General Circulation Model (OGCM). This result lends
credence to the notion, adopted in the present study, that a particle analysis is relevant to
the transport of dense water to the northern hemisphere. In addition, the motion of eddies
is best described by following their centre-of-mass, so if dense water is transported by
eddies, a particle model (where the azimuthal velocity de-couples from the translation)
is the most appropriate approach.

We now brie� y review the elements of a dense-water transport scenario relevant to
analytical mechanics.

(a) Equatorward � ow from Antarctica
A precise, widely accepted de� nition of AABW characteristics does not exist in the

literature, but the term is broadly attributed to potential temperature of less than 1.9 ±C
at depths exceeding 4000 m (Whitehead and Worthington 1982). As is clearly evident
from the meridional sections shown in their work (see their Fig. 1), AABW occupies the
depths exceeding 4000 m in the western North Atlantic as far north as latitude 40±N.
(Strictly speaking this water is actually ‘modi� ed Antarctic water’ as the water has been
modi� ed by mixing during its long northward � ow from the South Atlantic, but the
term AABW has been used for very long time and, besides, the Antarctic origin of
the cold water justi� es its continued usage.) The potential temperature of the overlying
North Atlantic Deep Water is more than 2 ±C, and it occupies depths between 1500 and
4000 m in the western North Atlantic so vertical mixing entails a downward � ux of heat.

The inertial current model of Stommel and Arons (1960a,b) views the AABW � ow
as a western boundary current � owing equatorward along the � ank of a channel that
extends from high latitudes of the southern hemisphere to the equator. This theory deals
only with the � ow of (a column of) water from its source near the Pole to the vicinity of
the equator, and ignores the equator crossing into the other hemisphere.

A straightforward consideration of angular momentum conservation indicates that
a parcel of AABW originating at, say, latitude 55±S with zero initial zonal velocity has
increased its angular momentum, upon reaching the equator, by an amount equivalent
to an increase of its zonal velocity to 200 m s¡1. How does this change of angular
momentum take place without a corresponding increase in its kinetic energy? A careful
account of the changes in angular momentum that a deep-water eddy undergoes on its
way from Antarctica to the equator is the � rst issue addressed by the present study.

(b) Equator crossing
The process of equator-crossing by an AABW water parcel is not addressed by

the Stommel and Arons theory, but subsequent theoretical work on the subject stresses
the possible role of either dissipation or relative vorticity changes along the western
boundary. The reader is referred to NB for a thorough review of this important issue.
Despite the basic differences between the dynamics of isolated eddies, modelled as point
masses, and that of continuous currents, many of the details related to their equator-
crossing were shown by NB to be similar. Speci� cally, the simulation both of particles
and continuous currents shows that the equator acts as a ‘splitter’, in the sense that in
both cases a fraction of the particles/current does not cross the equator into the other
hemisphere and, instead, recirculates in its hemisphere of origin. A careful analysis of
the dynamics associated with this ‘splitting’ of meridionally moving particles/current at



MECHANICS OF EDDY TRANSPORT 2013

the equator is the second focus of our study, both of which are addressed in the context
of particle dynamics.

The common thread that connects the two foci of the present paper is the transport
of AABW into the northern hemisphere. The meridional cross-section of Whitehead and
Worthington (1982) indicates that the AABW core (i.e. water with potential temperature
less than about 1 ±C) is entirely missing north of the equator. The NB compilation of
data quanti� es this diminishing of the transport with latitude in the Atlantic Ocean,
and shows that the decrease of this transport between 30±S and the equator is not
uniform. From 7 Sv at the south end of the Brazil basin (»30±S) the AABW transport
decreases only slightly to 6.7 Sv at 23±S and to 5.5 Sv at 11±S—for a total decrease
of 20% (1.5 Sv) in over 20± of latitude. In contrast, upon reaching the vicinity of the
equator the AABW transport decreases abruptly to about 2 Sv only—a decrease of
65% (3.5 Sv) in just a few degrees of latitude! The data of Whitehead and Worthington
(1982) show that the rapid decrease in the AABW transport continues into the northern
hemisphere and at 2±N it is only a fraction of 1 Sv. The scenarios in the Paci� c and
Indian Oceans are not as well documented as in the Atlantic Ocean, but the available
scant observations indicate a qualitatively similar picture. This observation supports the
theoretical conclusion reached by NB, that the equator acts as a ‘splitter’ of the AABW
current as it does for a cloud of particles. The small decrease of AABW transport in the
20± of latitudes south of 11±S can be attributed to mixing with the overlying water, but
the larger decrease near the equator is, presumably, caused by the additional ‘equatorial
effect’.

The two issues addressed in the present work—the changes in angular momentum
that occur when water columns � ow from Antarctica to the equator and the dynamics of
equator crossing along the ocean’s bottom—are both studied by substituting the angular
momentum for the zonal velocity component in the governing Lagrangian equations.
This, in turn, allows the construction of a canonical Hamiltonian form for the two
degrees of freedom (2DOF) dynamical system. The same substitution was employed in
the study of cross-equatorial � ow under prescribed meridional potential (Dvorkin and
Paldor 1999), and for quantifying the zonal drift of time-dependent free particle motion
on the surface of the rotating earth (Paldor 2001).

This paper is organized as follows: in section 2 we develop the Hamiltonian form
of the system that describes the motion of a deep-water eddy along the bottom of a
parabolic meridional channel. This form of the dynamics is applied in section 3 to the
equatorward motion from Antarctica to the equator, by combining analytical results
with numerical integration of the equations in midlatitudes. The same form is applied
in section 4 to the equator-crossing process, as well as to the details of the splitter role
of the equator. The two regimes are combined in section 5 to the entire trajectory of an
AABW eddy from Antarctica to the equator and continuing from there to either of the
two hemispheres.

2. HAMILTONIAN FORM OF THE TRANSPORT EQUATIONS AND ITS ANALYSIS

Consider the geometry shown in Fig. 1 where a deep (i.e. cold water) eddy moves
along the bottom of a channel whose axis is directed in the meridional direction (Á/ and
whose depth is parabolic in the longitudinal direction (¸/. We regard the eddy’s centre
of mass as a particle that obeys the momentum equations:

Ut D V sin.Á/.2Ä C U=R cos.Á// ¡ g0h¸=R cos.Á/; (2.1a)
Vt D ¡U sin.Á/.2Ä C U=R cos.Á//; (2.1b)
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Figure 1. The geometry of the meridional, parabolic channel on the spherical earth, showing latitude (¸) and
sine longitude (Á). The earth itself is missing from the � gure and only the channel (with schematic deep water
eddies) is shown. The longitude scale is arbitrary (bottom shoaling depends on 1¸) and the vertical axis is the

height from the earth’s centre, i.e. the ratio of channel depth to earth’s radius is greatly exaggerated.

where U and V are the velocity components of the eddy’s centre of mass in the
zonal (¸/ and meridional (Á/ directions, respectively, Ä and R are the earth’s rotation
rate and radius, respectively, g0 is the reduced gravity (g0 D g.½1 ¡ ½2/=½1, with g
the gravitation constant, ½1 and ½2 are the densities of the water in the eddy and
in the overlying water, respectively) and h.¸/ is the relief of the channel bottom
measured relative to the centreline, ¸ D 0. The bottom relief is assumed to be parabolic,
h.¸/ D H.¸=1¸/2, so h.¸/ increases from h.0/ D 0 to h D H at j¸j D 1¸. Subscripts of
variables indicate derivatives (e.g. ¸ in (2.1a)) and time-derivatives on the left-hand side
(l.h.s.) are Lagrangian derivatives. In these equations both the variation of the Coriolis
parameter, 2Ä sin.Á/, with Á and the curvature of the earth’s surface (via the metric
terms U=.R cos.Á//) are fully taken into account. In the following, the subscript ‘s’ will
indicate a special (e.g. steady) solution. The momentum equations (2.1a,b) extend the
momentum equations on the equatorial ¯-plane, studied in NB, to the global scale.

In addition to these momentum equations, the eddy’s coordinates vary with time as:

¸t D U=R cos.Á/; (2.1c)
Át D V =R: (2.1d)

As in Dvorkin and Paldor (1999), see also Paldor and Killworth 1988), the set (2.1) is
non-dimensionalized so as to minimize the number of system parameters. The length-
and time-scales that appear in system (2.1)—R and .2Ä/¡1—provide the scales for
non-dimensionalizing the corresponding variables and the resulting velocity scale is
.2ÄR/ ¼ 930 m s¡1. Thus, a dimensional velocity of 10 cm s¡1 corresponds to a non-
dimensional velocity of about 10¡4.
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The non-dimensional form of system (2.1) is:

Ut D V sin.Á/.1 C U=cos.Á// ¡ ®¸=cos.Á/; (2.2a)
Vt D ¡U sin.Á/.1 C U=cos.Á//; (2.2b)

¸t D U=cos.Á/; (2.2c)
Át D V; (2.2d)

where U; V and t are now dimensionless and ® D 2g0H=.2ÄR1¸/2. For typical
oceanic values of g0 D 0:5 £ 10¡2 m s¡2, H D 2000 m and 1¸ D 0:5 radian, ® is of
order 10¡4. Note that ® is the single parameter of system (2.2) that augments the � ve
dimensional parameters (g0, R, Ä, H , 1¸/ of system (2.1).

System (2.2) conserves energy but does not have a canonical Hamiltonian form,
which is obtained next.

(a) Canonical form of the momentum equations
To write system (2.2) in canonical form we substitute the angular momentum for

the zonal velocity. In non-dimensional form, the angular momentum, D, is:

D D cos.Á/.cos.Á/=2 C U/; (2.3)

so that the zonal velocity can be recovered from the value of D via:

U D D=cos.Á/ ¡ cos.Á/=2: (2.4)

Expressing the total energy in terms of D instead of U the Hamiltonian function is:

H.V ; Á; D; ¸/ D 1
2V 2 C 1

2 .D=cos.Á/ ¡ cos.Á/=2/2 C 1
2 ®¸2; (2.5)

and (V , Á) and (D, ¸/ are its two pairs of conjugate variables satisfying the canonical
equations:

Át D V D HV ; Vt D 1
2 sin.2Á/. 1

4 ¡ D2=cos4.Á// D ¡HÁI (2.6a)

¸t D D=cos2.Á/ ¡ 1
2 D HD; Dt D ¡®¸ D ¡H¸: (2.6b)

Set (2.6) is the sought canonical form of the eddy translation model and the Hamiltonian
(2.5) is its integral of motion. Thus, when H is the only integral, the system is not
integrable so chaotic bands exist. In contrast, when the channel’s bottom is � at (h.¸/ D
constant) or when gravity is set equal to zero (® D 0), D is also conserved according to
(2.6b), so the 2DOF system (2.6) has two integrals of motion, H and D, i.e. the system
is integrable. This case is a natural starting point for the analyses of (2.6) since many of
its dynamical features already exist in the inertial system, which is brie� y summarized
next.

(b) The inertial dynamics
Setting ® D 0 in system (2.6) results in the inertial system, studied thoroughly

in Paldor (2001) and Paldor and Sigalov (2001). Equation (2.6b) implies that D is
a parameter of the integrable 1DOF system (2.6a). The cyclic coordinate ¸.t/ is
determined by D and Á.t/ via ¸t D D=cos2.Á.t// ¡ 1

2 , and The Hamiltonian (2.5) is:

Hinertial.V ; ÁI D/ D 1
2 fV 2 C .D=cos.Á/ ¡ cos.Á/=2/2g: (2.7)

(Note: D is a variable in 2.5 but it appears as a parameter in 2.7 though ¸t D
@Hinertial=@D!)
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For D > 1
2 the origin, V D 0 D Á, is the only � xed point of the reduced (V; Á)

system and the associated zonal motion along the equator is directed eastward with
constant speed U D D ¡ 1

2 > 0. Near this � xed point the (V ; Á) motion consists of os-

cillations with frequency (D2 ¡ 1
4/

1
2 . The averaged (with respect to the ¸.t/ oscillation

that follows from the (V ; Á) oscillation) rate of longitude increase, hd¸=dti, is given by:

hd¸=dti D .D ¡ 1
2/ C D ¢ ±E=.D2 ¡ 1

4/; (2.8)

where ±E D 1
2V 2jÁD0 is the difference between the value of Hinertial.V , Á; D/ and

1
2 .D ¡ 1

2/2 D Hinertial.0; 0I D/. This averaged longitude increase has two contributions:
the � rst, D ¡ 1

2 D U > 0, is due to the eastward zonal velocity along the equator
(see (2.4)); the second term is due to the drift associated with the averaged oscillatory

motion (over the period T D 2¼=.D2 ¡ 1
4/

1
2 /, which is also directed eastward for

D > 1
2 .

For D < 1
2 (i.e. U jÁD0 < 0) the equator is a hyperbolic � xed point of (2.6a), so the

linearized motion near it is exponential in time (i.e. westward motion on the equator

is unstable) and two elliptic � xed points occur at latitudes Áell D §arcosf.2D/
1
2 g. The

analysis near these points (Vell D 0, Áell D §arcosf.2D/
1
2 g) shows that the frequency of

(V , Á/ oscillation near them equals sin(Áell/ (the non-dimensional Coriolis frequency),
so the period of these inertial, midlatitude, oscillations is:

T D 2¼=sin.Áell/ D 2¼.1 ¡ 2D/¡ 1
2 : (2.9)

The zonal motion ¸.t/ near these midlatitude � xed points consists of oscillations with
period given by (2.9) due to the oscillations in (V , Á/ and a westward-directed drift at a
rate given by:

hd¸=dti D ¡±E=sin2.Áell/ D ¡±E.1 ¡ 2D/¡1: (2.10)

Here, ±E is the value of Hinertial.V , Á; D/ (recall that Hinertial.0; Áell; D/ D 0:0) and,
since the Hamiltonian is conserved, ±E is determined by the initial conditions of V (0),
Á(0) and U (0) (i.e. by V (0), Á(0) and D/. To sum up the relevant aspects of inertial
dynamics: there exist two oscillatory regimes, an equatorial regime where the eddy
oscillates between the two sides of the equator while drifting eastward, and a midlatitude
regime where the eddy oscillates about a mean latitude in one hemisphere, while drifting
westward.

(c) Special solutions
The special solutions of system (2.6) considered here (designated by the subscript

‘s’) obtain by requiring that Vt vanishes identically. Steady solutions of (2.6) are a
particular type of special solutions obtained by setting @=@t D 0 in all four equations,
and a straightforward calculation shows that (for realistic U and Á, i.e. non-negative D)
these solutions satisfy:

Vs D 0 D ¸sI Ds.Ás/ D 1
2 cos2.Ás/I for any (constant) Ás: (2.11)

In these steady solutions the eddy rests at some latitude Ás on the channel’s centre-line
with zero kinetic energy. Since both Us D 0 (see Eq. (2.4)) and Vs D 0 the eddy remains
in this location at all times. Since Ds D 1

2 cos2.Ás/ < 1
2 , the analysis of Dvorkin and

Paldor (1999) guarantees that all steady states are elliptic in (V , Á/ phase space, so V
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and Á can only oscillate with frequency sin(Ás/ near (Vs, Ás/. Equation (2.6b) ensures
that for � xed Á D Ás the linearized dynamics in (D, ¸/ is oscillatory too (with frequency
®

1
2 =cos.Ás//.

The � rst, non-steady, special solution of (2.6) represents equatorial oscillations.
Thus, setting Á.t/ D 0 in the Vt equation of (2.6a) to ensure that the eddy remains on
the equator, and V .t/ D 0, at all times one gets:

Vs.t/ D 0I Ás.t/ D 0I @Ds.t/=@t D @Us.t/=@t D ¡®¸s.t/I
@¸s.t/=@t D .Ds.t/ ¡ 1

2/ D Us.t/: (2.12)

This special solution describes harmonic oscillations of (Ds, ¸s/ on the equator (where
the Coriolis force vanishes so no Vs is generated by the � nite Us.t/ D Ds.t/ ¡ 1

2/.
The Hamiltonian of this system is a ‘potential well’, H(Us, ¸s/ D 1

2 .U 2
s C ®¸2

s / D
1
2 f.Ds ¡ 1

2/2 C ®¸2
s g, and the frequency of these equatorial oscillations is ®

1
2 . The

conservation of energy implies that the zonal speed, jUs.t/j, is determined by j¸s.t/j
via jUs.t/j D .2E ¡ ®¸s.t/

2/
1
2 , where E is the value of H (i.e. either 1

2U2
s j¸D0 or

1
2® maxf¸s.t/

2g), i.e. ¡.2E/
1
2 6 Us.t/ 6 .2E/

1
2 .

For 0 < jVsj ¿ jUsj in system (2.6) Á.t/ does not vanish identically but one can
naively deduce that the special solution, (2.12), describes the dynamics to � rst order in
Á only. However, we will shortly show that this solution is unstable so small deviations
from the special solution are repelled from the equator.

The second, non-steady, special solution of (2.6) approximates the midlatitude
geostrophic motion. It obtains by setting Ds D 1

2cos2.Ás/ to ensure Vt D 0 in (2.6a)
so Vs.t/ is constant, not necessarily zero. For oceanic speeds of order 10 cm s¡1

jVsj D O.10¡4/ ¿ 1 so that terms proportional to V 2
s are second order only. Since

Ds D 1
2 cos2.Ás/ the value of ¸s obtains from the Dt equation in (2.6b):

¸s D ¡Dt =® D
³

1

2®

´
sin.2Ás/Vs: (2.13)

Note that differentiation of (2.13) with respect to time yields @¸s=@t D cos.2Ás/V
2
s =®,

which is quadratic in Vs: positive (eastward) for Ás < 45± and negative (westward)
for Ás > 45±. It follows from (2.13) that sin(Ás/Vs D ®¸s=cos.Ás/, which is simply
the geostrophic balance between the zonal pressure gradient at ¸s (see (2.2a)) and the
Coriolis force, sin(Ás/Vs.

To sum up, to � rst order in jVsj, the special midlatitude solution is:

Vs D 2®¸s=sin.2Ás/ D constantI Ás.t/ D Á.0/ C VstI
Ds.Ás/ D 1

2 cos2.Ás/I ¸s D sin.2Ás/Vs=.2®/; (2.14)

so Vs is geostrophic (constant!) and Ás.t/ and Ds.t/ are linear—while ¸s.t/ is
quadratic—in Vs.

This special solution is realized only for V .0/ D Vs. It will be approximately
realized for V .0/ D 0 provided Vs ¿ 1 (see Fig. 2). However, if Vs is not small or
V .0/ D 0 this solution does not provide a reasonable approximation and an averaged
trajectory is now derived for this case.

(d ) Averaged (slow) trajectory
In addition to the two special solutions found above, an averaged trajectory can be

constructed analytically in which the fast oscillatory part of the trajectory (that originates
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from the inertial motion) is � ltered out and the slow monotonic motion is the sole
contributor to the trajectory. Paldor (2001) applied the same averaging out of the fast
oscillations from the zonal drift associated with the inertial oscillations.

In the present problem the averaged trajectory obtains by realizing that for � xed
D < 1

2 the (inertial) oscillations in (V ; Á/ have, according to (2.9), a frequency of

(1 ¡ 2D/
1
2 D sin.Áell/. For � xed Á, on the other hand, the frequency of oscillation in (D,

¸/, is ®
1
2 =cos.Á/ (see 2.6b). Since in midlatitudes, sin(Áell/ » 0:5, while ®

1
2 =cos.Á/ »

10¡2 for realistic values in the ocean, we can safely assume that D is constant in the
course of a single (V , Á/ oscillation. Thus, when D is � xed the formula for the zonal
drift (that � lters out the (V , Á/ oscillations from the inertial trajectory) developed in
Paldor (2001; his Eq. 5.8) applies straightforwardly in the present case. Accordingly,
the coordinates Dav.t/ and ¸av.t/ of the averaged trajectory satisfy:

¸av.t/t D ¡E=.1 ¡ 2Dav/I Dav.t/t D ¡®¸av; (2.15)

where E D H ¡ 1
2®.¸av/2. The latitude’s temporal changes are determined from cos2

.Áav.t// D 2Dav.t/ and the calculation of V .t/ is redundant. This averaged trajectory
extends the second special solution to the case when the initial velocity V (0) differs
signi� cantly from Vs D 2®¸.0/=sin.2Á.0//.

(e) Stability of special solutions
An important characteristic of any solution of a dynamical system is its stability,

which determines the temporal evolution of small amplitude deviations (perturbations)
from it. In order to assess the stability of a special solution, one has to linearize system
(2.6) near it and assume that the temporal evolution of the perturbations (to all four
variables) is given by e¹t where ¹ can be complex. When Ref¹g is positive, the
perturbations grow exponentially in time, so after some � nite time the perturbations
are no longer small.

Applying this procedure to system (2.6) one gets a quadratic equation for ¹2, which
has to be negative for stability. The condition ¹2 < 0 is guaranteed provided:

4.Ds/
2 tan.Ás/

4 > cos.2Ás/.
1
4 ¡ .Ds/

2=cos.Ás/
4/: (2.16)

This condition is always satis� ed by the steady states for Ás 6D 0, by the midlatitude
(i.e. the second non-steady) special solution and by the average trajectory, since in all
these cases (1

4 ¡ D2
s =cos.Ás/

4/ D 0 while the l.h.s. of Eq. (2.16) is positive. However,
in the equatorial special solution the l.h.s. vanishes .Ás D 0/, while if Ds < 1

2 the
r.h.s. is positive so condition (2.16) is violated. Thus, westward equatorial motion
(U D D ¡ 1

2 < 0) is unstable, so the trajectory is repelled from the equator; while for
eastward motion (U D D ¡ 1

2 > 0) the r.h.s. of Eq. (2.16) is negative, so the solution
is stable and the eddy remains close to the equator. These results are invoked in the
following two sections to explain both focal issues of this study.

3. MIDLATITUDE MOTION

The � rst issue addressed in this work is the dynamical description of the trajectory
of a dense eddy from Antarctica to the tropics and the angular momentum balance along
this trajectory.

The special solution given by Eq. (2.14) applies to midlatitude, geostrophic, fric-
tionless motions. To � rst order, the velocity in this special solution is geostrophic
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Figure 2. The solution of Eq. (2.6) (dotted curve) and its geostrophic midlatitude approximation Eq. (2.14) (solid
curve) starting from the initial conditions: latitude Á.0/ D 60±S; longitude ¸.0/ D ¡10± ; velocity components
U.0/ D 0 and V .0/ D 0 for the exact solution (dotted curve), and V .0/ D 2®¸.0/=sin.Á.0// for the geostrophic
solution. Note that a solution originating near the geostrophic special solution remains close to it at all times. Final
time (marked by small open circles) is 210 (2 weeks), stars mark 40 time-unit (3-day) intervals, an ‘x’ marks the
point at t D 0 and ® D 0:01 (thus the high speed). Similar results obtain for other ®-values or initial conditions.
The second order westward (eastward) drift poleward (equatorward) of the 45± latitude is clearly evident in the

two curves.

and meridionally directed, V D 2®¸=sin.2Á/; the Coriolis force, V sin.Á/, balances
®¸=cos.Á/, the gravitational force due to the sloping channel. An angular momen-
tum view of this motion is that D increases continuously by the applied zonal pres-
sure gradient force, Dt D ¡®¸, but since the total energy is not altered, this change
in D is manifested only in the continuous change in cos(Á/ and not in U . In addition
to the geostrophic meridional velocity, there exists a second order contribution to the
cross-channel, zonal, motion given by ¸t D cos.2Á/V 2=®, directed westward at latitudes
higher than 45± and eastward at latitudes lower than 45±.

These results are now con� rmed by comparing them to numerically computed
solutions of (2.2).

(a) Numerical con� rmation
System (2.2) was integrated numerically using a � fth order Runge–Kutta scheme

with a 10¡9 tolerance to verify the analytical considerations and to compute the geogra-
phical, (¸, Á/, trajectories’ characteristics. Figure 2 shows the trajectories obtained from
the initial conditions: U.0/ D 0 (i.e. D.0/ D 1

2 cos2.Á.0///; Á.0/ D 60±S; ¸.0/ D ¡10±;
V .0/ D 2®¸.0/=sin.2Á.0// (solid curve) and V .0/ D 0 (dotted curve). The former curve
is the special solution Eq. (2.14) while the latter (dotted) curve of Fig. 2 clearly
demonstrates the oscillatory (i.e. stable) behaviour of the system near the special
solution (2.14), i.e. when V .0/ 6D 2®¸.0/=sin.2Á.0//. Since U.0/ D 0 in both cases,
the initial condition V .0/ D 0 in the oscillatory curve implies, according to Eq. (2.5),
that H D 1

2 ®¸.0/2 is the potential energy. Thus, at short times the potential energy can
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Figure 3. The midlatitudes averaged trajectory (solid curve inside spiral), the actual trajectory (solid, spiralling
curve) and the geostrophic special solution (dotted curve) for ® D 0:001. The averaged trajectory accurately
� lters out the (inertial) oscillations from the actual trajectory. The geostrophic solution provides a very poor
estimate of the actual trajectory (and even reaches the South Pole) since V .0/ D ¡0:04, which is twenty-times
the initial northward velocity of the geostrophic special solution Vs D ¡0:002.D 2®¸.0/=sin.2Á.0//. The other
initial conditions are: longitude ¸.0/ D 50±E, latitude Á.0/ D 30±S and zonal velocity component U.0/ D 0 (i.e.
angular momentum D.0/ D 0:125 for the averaged trajectory). Final time is 920 time units (2.5 months), stars
mark 100 time-unit (8-day) intervals, and initial and � nal locations are marked by ‘x’ and ‘o’. See text for details

and discussion.

only decrease, to enable the increase in the kinetic energy, i.e. the eddy must start its
trajectory with positive U so 1

2®¸2 can decrease.
The kinetic energy that develops when the potential energy decreases is divided

into two components: the meridional geostrophic motion of the special solution (2.14),
and the oscillations near it. The only way to observe only the former component (the
solid curve of Fig. 2) is to impose the geostrophic velocity as the initial velocity.
This curve of Fig. 2 also demonstrates the analytical result regarding the second order
westward/eastward drift at latitudes poleward/equatorward of 45±, which are masked
by the oscillations in the thin-solid curve. In the same way that equatorward motion
occurs only along the channel’s western � ank (Fig. 2), poleward motion can only occur
along the channel’s eastern � ank where ¸ > 0, so D decreases (Dt D ¡®¸) to enable
the increase in latitude.

As was noted above, the averaged trajectory of section 2(d) is also valid only
in midlatitudes, and it provides a more accurate estimate than the special solution
there when the initial velocity is not geostrophic. A numerical demonstration of the
improvement afforded by the averaged trajectory over the special (geostrophic) solution
is given in Fig. 3 for the case where V .0/ 6D Vs D 2®¸.0/=sin.2Á.0//. As discussed
above, in this case the geostrophic solution (dotted curve) approximates the actual
trajectory (spiralling solid curve) very poorly, while the averaged trajectory (solid curve
inside spiral) reproduces the average of the actual trajectory over the inertial oscillations
with impressive accuracy.
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Figure 4. Equatorial oscillations. (a) Right at the equator: latitude Á.0/ D 0 (shown in (longitude, ¸, U D D ¡ 1
2 )

phase space, where U is zonal velocity component and D angular momentum, since the (¸, Á) curve is a straight
line); the � nal time is 200 (16 days) and stars mark one-tenth of that time. (b) Near the equator: Á.0/ D 0:001±

(100 m north of the equator) � nal time is 350 (28 days) and asterisks marks 20 time unit (1.6-day) intervals. In
both cases: ¸.0/ D ¡10± ; meridional velocity component V .0/ D 0 D U.0/ and ® D 0:001 (see text) were used.
The instability of the equatorial regime is clearly evident in the growing meridional extent of the trajectory in (b),

which occurs on the westward segment only. Initial and � nal locations are marked by ‘x’ and ‘o’.

4. EQUATORIAL TRAJECTORIES

As was shown above, the motion of the eddy along the equator is oscillatory with

frequency ®
1
2 . The motion along the eastward segment of the oscillation is stable, so the

eddy encounters no problem traversing to the channel’s eastern � ank. In contrast, the
motion along the oscillation’s westward segment is unstable, so during this segment an
expulsion of the eddy from the equatorial oscillation regime is expected to occur. These
results are now con� rmed numerically.

(a) Numerical con� rmation
The numerical computation of the oscillations near the equator shown in Fig. 4

clearly con� rms the analytic conclusions reached above. Right on the equator, the eddy

oscillates with a ®
1
2 frequency, as is evident from the phase space plot in Fig. 4(a) (the

corresponding (¸, Á/ plot is a trivial straight line), where kinetic energy is continuously
exchanged with potential energy (while, of course, the Hamiltonian’s value remains
constant at all times). When the trajectory originates slightly off the equator (e.g. 0.001±

latitude—a mere 100 m), on the channel’s western � ank, the results shown in Fig. 4(b)
demonstrate that the eddy successfully completes the eastward segment of the oscillation
while remaining close to the equator. This is consistent with the analytic result regarding
the stability of the special solution along its eastward segment. By comparison, in the
return (westward) segment of the oscillation the trajectory is unstable (D < 1

2/ and
in agreement with this instability, the eddy in Fig. 4(b) is totally repelled from the
equator during the westward segment of its second oscillation and never completes the
oscillation. Similar behaviour is also encountered in the numerical simulations on the
equatorial ¯-plane carried out by NB and Borisov and Nof (1998).
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5. THE COMBINED TRAJECTORY—RELEVANCE TO OBSERVATIONS

The presence of the AABW throughout the western South Atlantic is well docu-
mented. The motion of this dense water can easily be explained, based on a balance of
forces between the eastward-directed pressure gradient force on the channels’ western
� ank and the westward-directed Coriolis force associated with an equatorward � ow in
the southern hemisphere. An alternative, angular momentum, paradigm of the same mo-
tion follows from the equation Dt D ¡®¸, which suggests that the only way for D to
increase (Dt > 0) is for the eddy to move along the western � ank of the channel where
¸ < 0. The continuous increase in D at � xed ¸, when U 2 is not free to grow beyond
a maximal value set by the energy conservation, is accomplished by increasing cos(Á),
i.e. decreasing Á.

When the AABW eddy is located suf� ciently close to the equator along the western
� ank its angular momentum D has reached a value close to 1

2 , and it is subject to the
equatorial oscillation dynamics. Along the initial eastward segment of the oscillation,

the speed, proportional to ®
1
2 , attains much larger values than in the midlatitude motion,

and U and D undergo a complete cycle from their respective initial values of 0 and 1
2

to their maximal values at the channel’s centre-line and back to 0 and 1
2 values at the

eastern longitude. Since the eastward segment is stable, the latitude Á.t/ remains near
zero. Upon commencing the westward segment of its oscillation the motion becomes
unstable, since D is decreased (U < 0) to values smaller than 1

2 . On the unstable
westward segment, the eddy can either be expelled from the equator (to the midlatitudes
of one of the two hemispheres) or complete its equatorial oscillation and return to the
western � ank while increasing the (Á, V / values relative to their values on the eastward
segment. As was shown in Fig. 4, both scenarios occur in dissipation-free simulations of
system (2.2) with equal probabilities. Since the expulsion of the eddy from the equator
takes place only on the westward segment, it is clear why no AABW water can be found
in the western North Atlantic—eddies can easily leave it but cannot return to it.

Up to this point, the dissipation (mixing) of the eddy’s dense water is completely
ignored, but it can be linked either to the shear associated with the eddy’s motion in the
quiescent overlying ocean water or to bottom friction. A large fraction of this mixing
is presumably induced by the eddy’s swirl velocity and not only by the translation
velocity, but the former cannot easily be parametrized in the present model while the
latter can. Thus, to get an appreciation of the effect of mixing in the context of system
(2.2) dissipation terms negatively proportional to the eddy’s velocity (¡¹U , ¡¹V ) are
added to the momentum (2.2a,b). Accordingly, the steady state in which the eddy does
not move at all is considered as a state complete of mixing. This naive approximation
can be expected to model properly the effect of dissipation, provided it is small enough
so that the structure of the system differs only slightly from a frictionless model (2.2)
i.e. ¹ ¿ 1. In this case the trajectory will slowly spiral to the steady state along the
channel’s centre-line. If this naive mixing scenario is valid, then it can be anticipated
that dissipation occurs primarily when the eddy’s translation velocity is largest, namely
along the two equatorial oscillation segments.

As was noted in subsection 2(b), a frictionless time-dependent equatorial motion
has a tendency to drift eastward. This inherent eastward drift tangles with the friction-
less westward-directed equatorial trajectory, so the addition of dissipation makes the
westward segment of the equatorial oscillation even more dif� cult to complete. This in-
creases the likelihood of the eddy leaving the equator, thus commencing the midlatitude,
geostrophic, poleward directed motion early during its westward segment. An example
of the combined trajectory when dissipation (with ¹ D 0:001) is included in (2.2) is
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Figure 5. The combined, 8000 time-unit (21-month) long, trajectory that consists of Antarctica-to-equator,
equatorial oscillation and equator-to-pole regimes. Small dissipation terms: (¡0.001U , ¡0.001V ), where Uand
V are zonal and meridional velocity components, respectively, are added to the momentum equations (2.2a,b) to
account for mixing of the dense eddy water with the surrounding water: (a) latitude, longitude (¸, Á) trajectory;
stars mark 200 time units (16 days) for the � rst 190 days; (b) energy (dashed curve, left abscissa) and longitude
(solid curve, right abscissa) versus time; dissipation occurs mostly in the regime of the trajectory where the
velocity is large i.e. in the equatorial oscillation regime (the regime with rapid longitudinal excursions). The energy

scales on the square of the velocity scale, 2ÄR2 D 0:865 £ 10¡6 m2s¡2 .

shown in Fig. 5. The tendency of the eddy to leave the equator early during the west-
ward segment of the oscillation, i.e. while it is located on the eastern � ank, is clear in
the geographic trajectory, Fig. 5(a). Dissipation of energy is dramatic both during (i.e.
the eastward segment of) the equatorial oscillation and near the midlatitude motion,
whereas in the steady midlatitude geostrophic segments energy loss is negligible due to
the low velocities involved. This correlation between changes in energy and longitude
is clearly evident in Fig. 5(b).

Although the analytical results derived in this study were obtained by treating deep
eddies as particles, it cannot be applied straightforwardly to the trajectories of deep
SOFAR¤ � oats (that are de� nitely particles) reported by Richardson and Schmitz (1993)
and by Richardson and Frantantoni (1999). The reason is that the particles in the present
model are denser than the surrounding water so they move right at the ocean � oor, while
SOFAR � oats are ballasted to move along � xed isobaric surfaces above the bottom, and
the sloping bottom does not affect the dynamics of overlying � oats as it does for bottom
trapped eddies.

The sensitive transition from midlatitude geostrophic � ow to the equatorial oscilla-
tion regime is the cause of the ‘splitter’ effect encountered in the numerical simulation
of NB on the equatorial ¯-plane. In these simulations, both a cloud of particles and a
geostrophic current moving along the channel’s bottom were split into two parts (thus
the term ‘splitter’) upon reaching the equator, each continuing its motion in another
hemisphere. Equatorial dynamics is, in fact, an absolute barrier to cross-equatorial mo-
tion along the channel’s western � ank, while along its eastern � ank the same dynamics
allows some eddies to escape meridionally to either of the two hemispheres while some

¤ SOFAR � oats are neutrally buoyant � oats that transmit acoustic signals captured by hydrophones placed at the
depth of the SOFAR (SOund Fixing And Ranging) channel. The low frequency (¿1000 Hz) signals can travel
great distances (>1000 km) in the sound channel and, by measuring the travel times of a signal to an array of
hydrophones located at the channel’s depth along the ocean’s shores, one can calculate the � oat’s exact location.
The � oat’s trajectory is then constructed from the time series of its location.
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Figure 6. Final locations (open circles) of 50 eddies launched in a 5 km2 square centred on latitude ¸ D 45±S,
longitude Á D 20±W (marked x) after: (a) 2600 time units (7 months); (b) 3000 time units (8 months); and (c) 3500
time units (9 months). All eddies are initialized with their geostrophic velocity and the value of ® (see text) is
5 £ 10¡4 . Note that speed increases on the equator, and that both fast dispersal and migration to the northern

hemisphere occur on the equatorial oscillation’s westward segment.

eddies can return westward so the cloud of particles splits. This splitting effect of the
equator on its eastern � ank results (at least for particles) from the non-integrability (i.e.
chaotic nature) of system (2.6). A demonstration of the splitting effect, as well as the
sensitivity of system (2.6) to the precise initial conditions, is given in Fig. 6 where
the position of a cloud of 50 particles is calculated at different times. The 50 particles
were launched in a 5 £ 5 km2 square centred at 45±S, 20±W, each particle with its own
geostrophic velocity. In the � rst 7 months (2600 time units) the distance between par-
ticles grew to O(500) km only (Fig. 6(a)), and in that period the entire cloud reached
the equator along the eastern � ank, and completed one equator oscillation with little
dispersal. In the next months (t D 3000) the cloud crossed the channel from west to
east along the equator with a moderate dispersal, particles are spread over 1500 km
(Fig. 6(b)), but upon commencing its westward segment 1 month later (at t D 3500
or 9 months after launch) the particles are O(6000) km apart (Fig. 6(c))—with some
particles still located along the equator while others are at higher latitudes in both
hemispheres. As expected, the dispersal occurs mostly on the westward segment of the
equatorial oscillation, and the particle speeds along this segment are much higher than
their speed along the Antarctica-to-equator part. The sensitivity of the � nal location
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(and the hemisphere where the particle � nds itself) to the precise value of the initial
location is a manifestation of the existence of chaotic bands that typi� es non-integrable
Hamiltonian systems such as (2.6). The same is true for the intermittent, rather than
smooth/continuous, dispersal.

ACKNOWLEDGEMENTS

The US–Israel Bi-National Science Foundation provided � nancial support for
this work via a research grant to the Hebrew University of Jerusalem and Florida
State University. The comments of two anonymous reviewers greatly improved the
presentation of this work.

REFERENCES

Borisov, S. and Nof, D. 1998 Deep, cross-equatorial eddies. Geophys. Astrophys. Fluid Dyn.,
87, 273–310

Dvorkin, Y. and Paldor, N. 1999 Analytical considerations of Lagrangian cross–equatorial � ow.
J. Atmos. Sci., 56, 1229–1237

Nof, D. and Borisov, S. 1998 Inter-hemispheric oceanic exchange. Q. J. R. Meteorol. Soc., 124,
2829–2866

Paldor, N. 2001 The zonal drift associated with time-dependent particle motion on
the earth. Q. J. R. Meteorol. Soc., 127, 2435–2450

Paldor, N. and Killworth, P. D. 1988 Inertial trajectories on the rotating earth. J. Atmos. Sci., 45, 4013–
4019

Paldor, N. and Sigalov, A. 2001 The mechanics of inertial motion on the earth and on a rotating
sphere. Physica D, 1601, 29–53

Richardson, L. P. and Schmitz, W. J. 1993 Deep cross-equatorial � ow in the Atlantic measured with SOFAR
� oats. J. Geophys. Res., 98(C5), 8371–8387

Richardson, L. P. and
Frantantoni, D. M.

1999 Float trajectories in the deep western boundary current and deep
equatorial jets of the tropical Atlantic. Deep-Sea Res. II, 46,
304–333

Stommel, H. 1958 The abyssal circulation. Deep-Sea Res., 5, 80–82
Stommel, H. and Arons, A. B. 1960a On the abyssal circulation of the world ocean: I. Stationary plan-

etary � ow patterns on a sphere. Deep-Sea Res., 6, 140–154
1960b On the abyssal circulation of the world ocean: II. An idealized

model of the circulation pattern and amplitude in oceanic
basins. Deep-Sea Res., 6, 217–233

Whitehead, J. A. and
Worthington, L. V.

1982 The � ux and mixing rates of Antarctic Bottom Water within the
North Atlantic. J. Geophys. Res., 87(C10), 7903–7924


